

New Land Laws and Scale Efficiency of Polish Farms: Nonparametric Regression Evidence

Tomasz Gerard Czekaj and Arne Henningsen

Department of Food and Resource Economics, University of Copenhagen, Denmark

Introduction

The Act on Formation of Agricultural System (Dz.U. 2015 poz. 1433) introduced a reform of the agricultural land market in Poland which may affect competitiveness of Polish farms. According to the *Act* a family farm is:

- =< 300 ha (both owned and leased land)
- is managed personally by a natural person, who:
 - is the owner or leaseholder of the farm,
 - · has agricultural qualifications,
 - has lived for at least 5 years in the commune, where at least part of his/her property is located.

Introduction

Research question:

What is technically optimal farm size in Poland?

Application:

Polish family farms specialised in crop production.

Method:

Production function - a workhorse of microeconomic production analysis.

Applied Production Analysis: Parametric Approach

- predominant approach
- most common: Cobb-Douglas:

$$\ln y = \alpha_0 + \sum_{i=1}^N \alpha_i \ln x_i$$

Translog:

$$\ln y = \alpha_0 + \sum_{i=1}^{N} \alpha_i \ln x_i + 0.5 \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{ij} \ln x_i \ln x_j$$

Advantages

- easy to estimate
- easy to interpret results

Disadvantages

- possibility of functional form misspecification
- Translog only *locally* flexible

Modern Approach to Econometric Production Analysis: Nonparametric Approach

Advantages

- no functional form is assumed
- globally flexible

Disadvantages

- · larger number of observations required
- bandwidth selection in kernel regression computationally demanding ⇒ time consuming

Optimal firm size

Elasticity of scale

Definition:

Elasticity of scale (ε) measures the elasticity of output with respect to (all) inputs:

$$\varepsilon \equiv \frac{\partial f(\lambda x)}{\partial \lambda} = \sum_{i=1}^{N} \varepsilon_i.$$

where, ε_i is a partial output elasticity with respect to *i*-th input

Optimal firm size

Size at which:

$$\varepsilon = 1$$
.

i.e. $CRS \rightarrow$ no economies or diseconomies of scale

Data used

- Polish FADN data on specialised crop farms
- 12 years (2004–2015)
- Unbalanced panel ($T \ge 9$)
- 688 crop farms
- 7425 observations

Economic Model

Production Function:

$$Y = f(L, A, V, K)$$

Dependent variable:

• Y - total agricultural production in PLN (2004)

Independent variables:

- L labor in Annual Work Units (2200 h/year) [SE010]
- A utilized agricultural area in ha [SE025]
- V intermediate inputs in PLN (2004) [SE281+SE336]
- K capital (stock) in PLN (2004) [SE441 SE446]

Parametric Models

Functional forms:

- Cobb-Douglas
- Translog

Panel data specifications:

- Pooled OLS
- Fixed Effects (two-ways)

Non-parametric Kernel Regression Model

- local-linear kernel-based regression
- nonparametric regression method for both categorical and continuous proposed by (Racine and Li, 2004)
 - second-order Epanechnikov kernel for continuous regressors (production inputs)
 - Wang and van Ryzin (1981) kernel for ordered categorical regressors (year)
 - Li and Racine (2003) kernel for unordered categorical regressors (farm IDs)
- data-driven bandwidth selection according to the expected Kullback-Leibler cross-validation criterion (Hurvich et al., 1998)
- R package "np" (Hayfield and Racine, 2008)
- Constraint Weighted Bootstrapping (CWB) (Hayfield and Racine, 2008) to impose monotonicity

Results

Panel data tests

- Pooled OLS rejected (Cobb-Douglas + Translog)
- ⇒ Fixed Effects

Specification tests:

- Cobb-Douglas rejected against Translog (Wald test)
- Cobb-Douglas and Translog functional from are not valid (RESET test)
- Translog vs. Non-parametric (t.b.a.)

Partial Output Elasticities of Translog and Nonparametric models

Elasticity of Scale vs. Farm size

Non-parametric

Translog

Conclusions

- optimal size of Polish crop farms is at least as large as the largest farms in our sample, i.e. larger than 500 ha,
- the new law on agricultural land market will negatively affect the competitiveness of crop farming in Poland,
- caution when using Translog investigating optimal size (linear relationship between size and elasticity of scale),
- use RESET test to test functional form!

- Hayfield, T. and Racine, J. S. (2008). Nonparametric econometrics: The np package. *Journal of Statistical Software*, 27(5):1–32.
- Hurvich, C. M., Simonoff, J. S., and Tsai, C. L. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. *Journal of the Royal Statistical Society Series B*, 60:271–293.
- Li, Q. and Racine, J. S. (2003). Nonparametric estimation of distributions with categorical and continuous data. *Journal of Multivariate Analysis*, 86:266–292.
- Racine, J. S. and Li, Q. (2004). Nonparametric estimation of regression functions with both categorical and continuous data. *Journal of Econometrics*, 119(1):99–130.
- The Act on Formation of Agricultural System (2015). (Ustawa z dnia 5 sierpnia 2015 r. o kształtowaniu ustroju rolnego). Dz.U. 2015 poz. 1433.
- Wang, M.-C. and van Ryzin, J. (1981). A class of smooth estimators for discrete distributions. *Biometrika*, 68:301–309.

- Hayfield, T. and Racine, J. S. (2008). Nonparametric econometrics: The np package. *Journal of Statistical Software*, 27(5):1–32.
- Hurvich, C. M., Simonoff, J. S., and Tsai, C. L. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. *Journal of the Royal Statistical Society Series B*, 60:271–293.
- Li, Q. and Racine, J. S. (2003). Nonparametric estimation of distributions with categorical and continuous data. *Journal of Multivariate Analysis*, 86:266–292.
- Racine, J. S. and Li, Q. (2004). Nonparametric estimation of regression functions with both categorical and continuous data. *Journal of Econometrics*, 119(1):99–130.
- The Act on Formation of Agricultural System (2015). (Ustawa z dnia 5 sierpnia 2015 r. o kształtowaniu ustroju rolnego). Dz.U. 2015 poz. 1433.
- Wang, M.-C. and van Ryzin, J. (1981). A class of smooth estimators for discrete distributions. *Biometrika*, 68:301–309.